Nuclear Engineering

College of Engineering

Nuclear Engineering has demonstrated vast potential for growth in power generation, medicine, industrial processes, plasmas, space technologies, and national defense. The field will become even more important and diverse in the future. Nuclear engineers will contribute to such advanced technologies as advanced fission and fusion power generators, nuclear medicine, more powerful computational methods, deep-space probes and propulsion systems, semiconductor device processes, improved food safety, advanced materials processing and characterization, advanced imaging, the safe treatment and disposal of spent nuclear fuel, and new forms of industrial gauges.  Nuclear engineers will continue to be at the vanguard of tomorrow's technologies and the establishment of entirely new industries for economic growth.

Note: The First-Year Engineering Program is the entry point for all beginning engineering students. They must complete the First-Year Engineering requirements before entering the engineering school of their choice. The mission of this student-oriented service program is to advise, teach and retain outstanding students for Purdue's College of Engineering. This core curriculum includes courses in math, chemistry, physics, computer programming, and communication skills, as well as introductory engineering coursework taught in the new Ideas to Innovation (i2i) Learning Laboratory. The First-Year Engineering Program provides students with a firm foundation and initial understanding of engineering and career options to assist them in identifying which of Purdue's engineering disciplines is the right fit. Our professional academic advisors, faculty and student advisors are dedicated to assisting beginning engineers with the first-year experience.

Nuclear Engineering Website

Plan of Study


Related Career Interests

Engineering and Technology


Science and Research

Careers in Nuclear Engineering

Graduates work in electric utilities, supervising reactor systems operations, refueling schedules, and the design and licensing of plant modifications. Others work for the regulatory agencies, providing the knowledge base and oversight for safe and proper reactor operation. Still others work for vendors – the companies that design reactor systems, manufacture subsystems and components, and provide inspection and engineering services for the global market. Those who choose a research path find positions in the national laboratories of the Department of Energy, where they engage in advanced energy studies, new uses of nuclear energy and radiation science, and the computer modeling, simulation, and visualization of complex phenomena.

With a degree in nuclear engineering, you could become involved in:

  • Providing future electrical energy systems, such as advanced fission and fusion reactors, needed not only by the U.S. but also by developing nations for economic and security growth.
  • Designing power systems, nuclear propulsion systems, and radiation sources and detectors for deep-space missions.
  • Applying radiation for sterilization of medical instruments and food processing equipment, and for food preservation.
  • Developing advanced radiation sources and detectors for use in scientific research as well as in precision manufacturing.
  • Applying radiation to diagnose and combat cancer and other diseases.
  • Optimizing the use of plasmas for the processing of semiconductors and other materials.
  • Contributing to national security through the stewardship of nuclear weapons and engineering safeguards against nuclear proliferation
  • Protecting the environment by reducing the emission of greenhouse gases, developing nuclear fuel cycles that reduce waste production, and designing facilities that can safely store nuclear waste.
Transfer to Nuclear Engineering
Contact Information